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Abstract. We study the planar antiferromagnetic Heisenberg model on a decorated hexagonal
lattice, involving both classical spins (occupying the vertices) and quantum spins (occupying
the middle of the links). This study is motivated by the description of a recently synthesized
molecular magnetic compound. First, we trace out the %p'u‘egrees of freedom to obtain a

fully classical model with an effective ferromagnetic interaction. Then, using high-temperature
expansions and Monte Carlo simulations, we analyse its thermal and magnetic properties. We
show that it provides a good quantitative description of the magnetic susceptibility of the
molecular magnet in its paramagnetic phase.

The Heisenberg model [1] has a long history and has been extensively studied throughout
these last thirty years. While it is exactly solvable in one dimension [2] in some of
its versions, it is only through approximate methods that quantitative information can be
obtained in higher dimensions. High- and low-temperature expansions [3, 4], Monte Carlo
simulations [5, 6] and renormalization group calculations [7, 8] have been widely developed
and give now a precise account of the critical regime of the model. However, little has
been done in the various specific contexts which are now realized in the magnetic molecular
materials.

For instance, the compound (NBuMn,[Cu(opba)}-6DMSOH,0, recently synthe-
sized by Stumpfet al (see [9]), exhibits a transition &. = 15 K towards an ordered
state. The structure of this material can be schematically described as a superposition of
layers of hexagonal lattices with the Ninions occupying the vertices and the ‘Cions
occupying the middle of the links, as shown in figure 1. The interplane coupling is small,
so the spin system can be considered two dimensional. In the plane, the nearest-neighbour
Mn-Cu ions interact through an antiferromagnetic coupling. It is interesting to determine
the extent to which such a simple microscopic model with no other interaction included can
guantitativelydescribe the magnetic and thermal properties of such a complex molecular
architecture. Of course, the isotropig3) model is critical only at zero temperature [10]
and the symmetry breaking & = 15 K presumably has its origin in a slight spin anisotropy
and/or a small interplane coupling. However, one expectsfop T, that the properties
of the material will be well described by the two-dimensional isotropic antiferromagnetic
spin-%—sping interaction. This is the problem that we investigate in this work.
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Figure 1. The structure of a layer in (NBdpxMnz[Cu(opba)}-6DMSOH,0.

We denote byS}M”) the spiniz3 operator associated with the Mn ion at sjteand by
S,.(C“) the spin% operator corresponding to the Cu ion at siten the middle of a link of
the honeycomb lattice. The antiferromagnetic interaction is represented by the Heisenberg
Hamiltonian

NS NL
H=7Y S S™ —eiupH Dy i — goupH Y 55 (1)
(i) j=1 i=1

where J is positive, H is the external magnetic fieldj, j) stands for a pair of nearest-
neighbour spinsN; is the number of sites andl, is the number of links on the honeycomb
lattice (N, = gNS). The spin:;’ operator can be approximated bylassicalspin Ss where

s is a unit classical vector and

5/(5
S=y3(G+1)
whereas the spié- operators are expressed in terms of the Pauli matriés) = %0'.

Since the quantum spin sites are not directly coupled to each other, one can trace out the
guantum spin dependence to get a completely classical partition function

Ns
Z(T,H) = /Ds {]‘[ 2cosh(||—3BJS(s; + 5)) + ozzHéZH)} exp<a1H Zsf) )
(i) i=1
where we have definegh = SBgiup, a2 = 3Bg2utp, and

s
Ds = Sin9j de] d(pj

N.
j=1
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and || X || stands for the length of vectoX. The indicesi and j now label theclassical
spins located at the vertices of the honeycomb lattice.

The partition function of equation (2) will now be treated by the standard techniques of
high-temperature expansion and Monte Carlo simulation to extract quantitative information
on the system.

In zero magnetic field, the partition function becomes

Z(T, 0)=/Ds{Hzcosn;,315||s,-+sj||) . €)

(i)
We get an effectivderromagnetidnteraction between the classical spins:

—BHerr = Y _ In[2cost3BTS|Is; + s;1)]. 4
(i.J)
We can perform a high-temperature expansion of the partition function of equation (3). By
using the star graph technique [4], we have derived the expansionZafflr0) up to the
30th order in the variabl& = %,BJS. For the specific heat we obtain the following result:
43060432 ,, 1084428794 ,. 50703530596 ,4
T 21049878 ' 1915538625 9577693125
174515087256 364,, 10010372498598008,,
13540176 324 67§ 417635308715 625
1712584839620191683704, 1634086374908 287292656,

43895559122 555765625 27958094 579597 056 875
218588272951 603 892 608,4

2641543327626 328 125
9205154 548418515452 736 83goj|

81777426645321391359375

®)

According to equation (2), the zero-field susceptibility defined by

_ kT 9%nZ
V. 9H?

H=0
can be expressed as
_kgT 1

2
s (ij) i (i) {ij)

whereW;; = 38JS||s; + s;ll, Wi = —3BJ S(s7 + 57), 57, = tanh(W;) W5/ W;; and

tanh(W;,) Wi\? WiN2
= 1— — (5%)°.
Qj VVI [ (‘/Vl + W” (S’/)
The high-temperature expansion pfcan be obtained in two independent ways: first
by expanding the partition function of equation (2) both in powerskofind in powers

of H and retaining the coefficient d?; second, through an expansion of the correlation
functions which occur in equation (6). Up to the seventh order, we apply both methods in
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order to validate our results. By using the second approach, more tractable at higher orders,
we have obtained the following series, up to the order 11:

Ny M% 2,0, 1, 2 2 2
Ty = LUB| %0262 = SK S K
X % kB ggl +482 38182 + = (g +g2)
2 SK3 — ! 2K4 — 8 SK® + 2 228 + o33 KS
27g1g2 1552 4055152 325515+ gopst?

(228K K7 _ i 262 | 5683 , K8 _ 122SK K°
BSOSg 2835°1° T 12757572 47zsg

924 5, o 19912 5\ o 7108 1
s K YR K . 7
* <893 025" 601 425g2> 49116 375g1g25 (7)

In order to improve the range of validity of the expansions (5) and (7) we performed a
Pade approximant extrapolation toward low temperatures (l&gealues). For both series
we get good stability of the Padable. The results will be presented below.

We performed a self-consistent check of our results by means of a Monte Carlo
simulation of the effective classical model (equation (4)). The various observables can
be expressed as ensemble averages with respect to the Boltzmann wéight 2(T, 0).

For instance, if we define

E = —kgT Z W,’j tanf’(W,-j)
(i, ))

which is the energy of the quantum spins for a fixed configuration of the classical ones, we
find that the internal energy is simply given b¥),, . and the specific heat by

2
Cy = kpp? [<E2>Heﬁ (E >Heff:| + kp (@), with & = %; |:COSV}ZI{4/,/):| . (8)
Similarly, from equation (6) the susceptibility can be expressed as a sample average. We
have used the Wolf algorithm [6] adapted to our effective Boltzmann weight, on lattices of
size increasing withk, up to 28 hexagons folk = 5.

In figure 2 we have plotted the specific heat as a functionKof The data points
correspond to the Monte Carlo simulation and the continuous line to the highest-order
diagonal Pad approximant of the high-temperature expansion. The first remarkable feature
is the well marked knee-hump variation ¢f, as the temperature decreases. One can
explain this effect in the following way. At very low temperature, the system is dominated
by the effective ferromagnetic interaction between the classical spins. For the purely
classical Heisenberg model, one expects a peak at low temperature in the specific heat
[11], corresponding to the crossover between the low-temperature critical regime and the
high-temperature uncorrelated one. The hump observed in figure Xnead corresponds
to this effect. AsT increases, the classical spin system goes rapidly to a disordered state,
whereas the quantum spins remain locally coupled to their classical neighbours. The knee
at K = 1 corresponds to this local antiferromagnetic order. This effect can be quantitatively
confirmed by the following calculation. Assuming that the classical spins are completely
random leads t¢£2) = (E)? in equation (8) and

y3

cosHf (2K y) dv- ©

This function, displayed in figure 2 (dashed line), exhibits a peak exactly under the bump
observed in the fulCy.

1
Cv = kp{®@)gisordered= 8NLk3K2/
0
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Figure 2. The specific heaCy/Npkp versusK = %/SJS: the Monte Carlo results are
represented by squares, the solid line shows the diagonal (7, &)apadoximant corresponding

to the high-temperature series of equation (5) and the contribution of the quantum spins
obtained from equation (9) is shown as a dashed line. The zero-temper&ture €o) limit,
Cy/Npkp = 2/3, is indicated.

The other feature which emerges from figure 2 is the spectacular agreement of the
series expansion with the Monte Carlo results uKta- 3 and the ability of this series to
reproduce the double-bump structure.

We obtain the same perfect agreement of our two methods for the magnetic susceptibility
up to K = 3. In figure 3, we have plotted (solid line) the (6, 6) Baabproximant of the
series (7) as a function of temperature, in a range which corresponds t& & 1.2. The
data points correspond to the experimental results which will be discussed below. The shape
of this curve can be explained as follows. Here again there are two physically different and
competing correlation effects. The first one, due to the antiferromagnetic spin compensation,
leads to a decrease of the susceptibility, more pronounced at lower temperature. The other
contribution, due to the ferromagnetic correlation of the classical spins, induces a divergence
at7 =0.

According to universality, we expect the critical behaviour at zero temperature to
be described by the non-linear-model. At low temperature the effective interaction
equation (4) reduces to

Heft = —%JSZ |Is; + ;| ~ constant- %JSZ@S.
(ij) (i)
which corresponds to the low-temperature limit of the ordinary classical Heisenberg model
on the honeycomb lattice with the ferromagnetic exchange con:zt“aﬁi%JS. The long-
wavelength expansion leads us further to the total effective energy in the form of the
non-linearo-model Hamiltonian:

s 1 . ,
Ho=lr s / (34m) - (9m) &P (10)

wheren(r) is the three-dimensional unit vector field on the two-dimensional ptanas
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Figure 3. The magnetic susceptibility times temperaty# in units of cn? K mol~1 versus

T in kelvin: the experimental data (squares) are taken from [9]; the solid line corresponds to
the diagonal (6, 6) P@&approximant based on the high-temperature series of equation (7) with
J =476 K, g1 =20, g2 =22.

an immediate consequence, from the quadratic expansion we have the magnon contribution
to the total energy per classical spin which is lineaflin

_ 3
E%—EJS—i-kBT

leading to the constant specific heat at low temperatlire= %NLkB. One can see in
figure 2 that our Monte Carlo data are compatible with this value.

As another consequence, we can ‘borrow’ the low-temperature behaviour of the magnetic
susceptibility from the renormalization group results [8, 12] for the non-lisearodel of
equation (10):

3 [ A7 JS } 3 [271 ]
X = constantx T°exp| —— —— | = constantx T°exp| —K |. (11)
ksT 4./3 V3

In figure 4 we have plotted the low-temperature Monte Carlo data fdtip) as a
function of K. The straight line corresponds to the behaviour of equation (11). We obtain
very good agreement, thereby confirming that at our lowest temperatures we are well inside
the expected universality region and the size of our simulated lattices is large enough.

These results show that our series expansions constitute a reliable parametrization of
the specific heat and the magnetic susceptibility of the model up te 3. We can now
apply this parametrization to the experimental data [9]. We have fitted the prd@duct
as a function of the temperature in the range 66<KI" < 300 K with J, g; and g, as
free parameters. The result is shown in figure 3, with the best-fit parameters given by
J =476 K, g1 = 2.0 andg, = 2.2. We observe excellent agreement with the experimental
data, confirming that the high-temperature magnetic properties of this compound are well
described by our model. Furthermore, these values of the parameters are very close to those
obtained for both Cu—Mn pairs [13] and chains [9, 14] with the same bridging network.



Letter to the Editor L277

16.0
14.0 —
12,0

10.0 —

In(xK

. MONTE CARLO DATA
= NON LINEAR SIGMA MODEL

8.0 —

6.0 T T T T T T
2.0 3.0 4.0 5.0
K

Figure 4. In(x K®) versusK: the squares correspond to Monte Carlo results while the solid
line shows the prediction of equation (11) of the non-lineamodel.

The weakly pronounced minimum observed in figure 3for 120 K has its origin in the
local antiferromagnetic ordering discussed above.

The material exhibits a ferromagnetic transitionTat= 15 K that the isotropic model
cannot describe. To give an account of this non-zero-temperature critical behaviour the
Hamiltonian must be generalized to include spin anisotropy and three-dimensional effects
[15], a modification which we are now investigating. However, it is amazing that the
agreement between the experimental data and the model persists down to rather low
temperaturesT( ~ 20 K), close to the measureq.

SVM thanks V A Fateev and Al B Zamolodchikov for helpful discussions.
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