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LETTER TO THE EDITOR
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Abstract. We study the planar antiferromagnetic Heisenberg model on a decorated hexagonal
lattice, involving both classical spins (occupying the vertices) and quantum spins (occupying
the middle of the links). This study is motivated by the description of a recently synthesized
molecular magnetic compound. First, we trace out the spin-1

2 degrees of freedom to obtain a
fully classical model with an effective ferromagnetic interaction. Then, using high-temperature
expansions and Monte Carlo simulations, we analyse its thermal and magnetic properties. We
show that it provides a good quantitative description of the magnetic susceptibility of the
molecular magnet in its paramagnetic phase.

The Heisenberg model [1] has a long history and has been extensively studied throughout
these last thirty years. While it is exactly solvable in one dimension [2] in some of
its versions, it is only through approximate methods that quantitative information can be
obtained in higher dimensions. High- and low-temperature expansions [3, 4], Monte Carlo
simulations [5, 6] and renormalization group calculations [7, 8] have been widely developed
and give now a precise account of the critical regime of the model. However, little has
been done in the various specific contexts which are now realized in the magnetic molecular
materials.

For instance, the compound (NBu4)2Mn2[Cu(opba)]3·6DMSO·H2O, recently synthe-
sized by Stumpfet al (see [9]), exhibits a transition atTc = 15 K towards an ordered
state. The structure of this material can be schematically described as a superposition of
layers of hexagonal lattices with the MnII ions occupying the vertices and the CuII ions
occupying the middle of the links, as shown in figure 1. The interplane coupling is small,
so the spin system can be considered two dimensional. In the plane, the nearest-neighbour
Mn–Cu ions interact through an antiferromagnetic coupling. It is interesting to determine
the extent to which such a simple microscopic model with no other interaction included can
quantitativelydescribe the magnetic and thermal properties of such a complex molecular
architecture. Of course, the isotropic O(3) model is critical only at zero temperature [10]
and the symmetry breaking atTc = 15 K presumably has its origin in a slight spin anisotropy
and/or a small interplane coupling. However, one expects forT � Tc that the properties
of the material will be well described by the two-dimensional isotropic antiferromagnetic
spin-1

2–spin-52 interaction. This is the problem that we investigate in this work.
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Figure 1. The structure of a layer in (NBu4)2Mn2[Cu(opba)]3·6DMSO·H2O.

We denote byS(Mn)
j the spin-52 operator associated with the Mn ion at sitej , and by

S(Cu)
i the spin-12 operator corresponding to the Cu ion at sitei in the middle of a link of

the honeycomb lattice. The antiferromagnetic interaction is represented by the Heisenberg
Hamiltonian

H = J
∑
〈i,j〉

S(Cu)
i · S(Mn)

j − g1µBH

NS∑
j=1

S
z(Mn)
j − g2µBH

NL∑
i=1

S
z(Cu)
i (1)

whereJ is positive,H is the external magnetic field,〈i, j〉 stands for a pair of nearest-
neighbour spins,NS is the number of sites andNL is the number of links on the honeycomb
lattice (NL = 3

2NS). The spin-52 operator can be approximated by aclassicalspinSs where
s is a unit classical vector and

S =
√

5
2

(
5
2 + 1

)
whereas the spin-1

2 operators are expressed in terms of the Pauli matrices,S(Cu) = 1
2σ.

Since the quantum spin sites are not directly coupled to each other, one can trace out the
quantum spin dependence to get a completely classical partition function

Z(T , H) =
∫

Ds

{∏
〈ij〉

2 cosh
(∣∣∣∣− 1

2βJS(si + sj ) + α2H êz

∣∣∣∣)} exp

(
α1H

NS∑
i=1

sz
i

)
(2)

where we have definedα1 = Sβg1µB , α2 = 1
2βg2µB , and

Ds =
NS∏

j=1

sinθj dθj dϕj
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and ||X|| stands for the length of vectorX. The indicesi and j now label theclassical
spins located at the vertices of the honeycomb lattice.

The partition function of equation (2) will now be treated by the standard techniques of
high-temperature expansion and Monte Carlo simulation to extract quantitative information
on the system.

In zero magnetic field, the partition function becomes

Z(T , 0) =
∫

Ds

{∏
〈ij〉

2 cosh( 1
2βJS||si + sj ||)

}
. (3)

We get an effectiveferromagneticinteraction between the classical spins:

−βHeff =
∑
〈i,j〉

ln
[
2 cosh( 1

2βJS||si + sj ||)
]
. (4)

We can perform a high-temperature expansion of the partition function of equation (3). By
using the star graph technique [4], we have derived the expansion of lnZ(T , 0) up to the
30th order in the variableK = 1

2βJS. For the specific heat we obtain the following result:

CV = NLkB

[
2K2 − 10

3
K4 + 4K6 − 8326

2025
K8 + 3676

945
K10 − 2963 432

893 025
K12

+ 43 060 432

21 049 875
K14 + 1084 428 794

1915 538 625
K16 − 50 703 530 596

9577 693 125
K18

+ 174 515 087 256 364

13 540 176 324 675
K20 − 10 010 372 498 598 008

417 635 308 715 625
K22

+ 1712 584 839 620 191 683 704

43 895 559 122 555 765 625
K24 − 1634 086 374 908 287 292 656

27 958 094 579 597 056 875
K26

+ 218 588 272 951 603 892 608

2641 543 327 626 328 125
K28

− 9205 154 548 418 515 452 736 832

81 777 426 645 321 391 359 375
K30

]
. (5)

According to equation (2), the zero-field susceptibility defined by

χ = kBT

V

∂2lnZ

∂H 2

∣∣∣∣
H=0

can be expressed as

χ = kBT

V

1

Z(T , 0)

∫
Ds

{∏
〈ij〉

2 coshWij

} [(
α1

∑
i

sz
i + α2

∑
〈ij〉

s̄z
ij

)2

+ α2
2

∑
〈ij〉

Qij

]
(6)

whereWij = 1
2βJS||si + sj ||, Wz

ij = − 1
2βJS(sz

i + sz
j ), s̄z

ij = tanh(Wij )W
z
ij /Wij and

Qij = tanh(Wij )

Wij

[
1 −

(
Wz

ij

Wij

)2
]

+
(

Wz
ij

Wij

)2

− (s̄z
ij )

2.

The high-temperature expansion ofχ can be obtained in two independent ways: first
by expanding the partition function of equation (2) both in powers ofK and in powers
of H and retaining the coefficient ofH 2; second, through an expansion of the correlation
functions which occur in equation (6). Up to the seventh order, we apply both methods in
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order to validate our results. By using the second approach, more tractable at higher orders,
we have obtained the following series, up to the order 11:

T χ = NL

V

µ2
B

kB

[
2

9
g2

1S
2 + 1

4
g2

2 − 2

3
g1g2SK + 2

9
(g2

1S
2 + g2

2)K
2

− 2

27
g1g2SK3 − 1

15
g2

2K
4 − 8

405
g1g2SK5 +

(
2

225
g2

1S
2 + 533

8505
g2

2

)
K6

+ 2

8505
g1g2SK7 −

(
4

2835
g2

1S
2 + 5683

127 575
g2

2

)
K8 − 4

4725
g1g2SK9

+
(

524

893 025
g2

1S
2 + 19 912

601 425
g2

2

)
K10 + 7108

49 116 375
g1g2SK11

]
. (7)

In order to improve the range of validity of the expansions (5) and (7) we performed a
Pad́e approximant extrapolation toward low temperatures (largeK-values). For both series
we get good stability of the Padé table. The results will be presented below.

We performed a self-consistent check of our results by means of a Monte Carlo
simulation of the effective classical model (equation (4)). The various observables can
be expressed as ensemble averages with respect to the Boltzmann weight e−βHeff/Z(T , 0).
For instance, if we define

E = −kBT
∑
〈i,j〉

Wij tanh(Wij )

which is the energy of the quantum spins for a fixed configuration of the classical ones, we
find that the internal energy is simply given by〈E〉Heff

and the specific heat by

CV = kBβ2
[〈

E2
〉
Heff

− 〈E〉2
Heff

]
+ kB〈8〉Heff

with 8 =
∑
〈i,j〉

[
Wij

cosh(Wij )

]2

. (8)

Similarly, from equation (6) the susceptibility can be expressed as a sample average. We
have used the Wolf algorithm [6] adapted to our effective Boltzmann weight, on lattices of
size increasing withK, up to 216 hexagons forK = 5.

In figure 2 we have plotted the specific heat as a function ofK. The data points
correspond to the Monte Carlo simulation and the continuous line to the highest-order
diagonal Pad́e approximant of the high-temperature expansion. The first remarkable feature
is the well marked knee-hump variation ofCV as the temperature decreases. One can
explain this effect in the following way. At very low temperature, the system is dominated
by the effective ferromagnetic interaction between the classical spins. For the purely
classical Heisenberg model, one expects a peak at low temperature in the specific heat
[11], corresponding to the crossover between the low-temperature critical regime and the
high-temperature uncorrelated one. The hump observed in figure 2 nearK = 4 corresponds
to this effect. AsT increases, the classical spin system goes rapidly to a disordered state,
whereas the quantum spins remain locally coupled to their classical neighbours. The knee
at K = 1 corresponds to this local antiferromagnetic order. This effect can be quantitatively
confirmed by the following calculation. Assuming that the classical spins are completely
random leads to

〈
E2

〉 = 〈E〉2 in equation (8) and

CV = kB〈8〉disordered= 8NLkBK2
∫ 1

0

y3

cosh2(2Ky)
dy. (9)

This function, displayed in figure 2 (dashed line), exhibits a peak exactly under the bump
observed in the fullCV .
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Figure 2. The specific heatCV /NLkB versusK = 1
2βJS: the Monte Carlo results are

represented by squares, the solid line shows the diagonal (7, 7) Padé approximant corresponding
to the high-temperature series of equation (5) and the contribution of the quantum spins
obtained from equation (9) is shown as a dashed line. The zero-temperature (K → ∞) limit,
CV /NLkB = 2/3, is indicated.

The other feature which emerges from figure 2 is the spectacular agreement of the
series expansion with the Monte Carlo results up toK ' 3 and the ability of this series to
reproduce the double-bump structure.

We obtain the same perfect agreement of our two methods for the magnetic susceptibility
up to K = 3. In figure 3, we have plotted (solid line) the (6, 6) Padé approximant of the
series (7) as a function of temperature, in a range which corresponds to 0< K < 1.2. The
data points correspond to the experimental results which will be discussed below. The shape
of this curve can be explained as follows. Here again there are two physically different and
competing correlation effects. The first one, due to the antiferromagnetic spin compensation,
leads to a decrease of the susceptibility, more pronounced at lower temperature. The other
contribution, due to the ferromagnetic correlation of the classical spins, induces a divergence
at T = 0.

According to universality, we expect the critical behaviour at zero temperature to
be described by the non-linearσ -model. At low temperature the effective interaction
equation (4) reduces to

Heff ' − 1
2JS

∑
〈ij〉

||si + sj || ≈ constant+ 1

8
JS

∑
〈ij〉

θ2
ij

which corresponds to the low-temperature limit of the ordinary classical Heisenberg model
on the honeycomb lattice with the ferromagnetic exchange constantJ ∗ = 1

4JS. The long-
wavelength expansion leads us further to the total effective energy in the form of the
non-linearσ -model Hamiltonian:

Hσ = JS

4
√

3

1

2

∫
(∂αn) · (∂αn) d2r (10)

wheren(r) is the three-dimensional unit vector field on the two-dimensional planer. As
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Figure 3. The magnetic susceptibility times temperatureχT in units of cm3 K mol−1 versus
T in kelvin: the experimental data (squares) are taken from [9]; the solid line corresponds to
the diagonal (6, 6) Padé approximant based on the high-temperature series of equation (7) with
J = 47.6 K, g1 = 2.0, g2 = 2.2.

an immediate consequence, from the quadratic expansion we have the magnon contribution
to the total energy per classical spin which is linear inT :

Ē ≈ −3

2
JS + kBT

leading to the constant specific heat at low temperatureCV = 2
3NLkB . One can see in

figure 2 that our Monte Carlo data are compatible with this value.
As another consequence, we can ‘borrow’ the low-temperature behaviour of the magnetic

susceptibility from the renormalization group results [8, 12] for the non-linearσ -model of
equation (10):

χ = constant× T 3 exp

[
4π

kBT

JS

4
√

3

]
= constant× T 3 exp

[
2π√

3
K

]
. (11)

In figure 4 we have plotted the low-temperature Monte Carlo data for ln(K3χ) as a
function of K. The straight line corresponds to the behaviour of equation (11). We obtain
very good agreement, thereby confirming that at our lowest temperatures we are well inside
the expected universality region and the size of our simulated lattices is large enough.

These results show that our series expansions constitute a reliable parametrization of
the specific heat and the magnetic susceptibility of the model up toK ≈ 3. We can now
apply this parametrization to the experimental data [9]. We have fitted the productT χ

as a function of the temperature in the range 60 K6 T 6 300 K with J , g1 and g2 as
free parameters. The result is shown in figure 3, with the best-fit parameters given by
J = 47.6 K, g1 = 2.0 andg2 = 2.2. We observe excellent agreement with the experimental
data, confirming that the high-temperature magnetic properties of this compound are well
described by our model. Furthermore, these values of the parameters are very close to those
obtained for both Cu–Mn pairs [13] and chains [9, 14] with the same bridging network.
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Figure 4. ln(χK3) versusK: the squares correspond to Monte Carlo results while the solid
line shows the prediction of equation (11) of the non-linearσ -model.

The weakly pronounced minimum observed in figure 3 forT ≈ 120 K has its origin in the
local antiferromagnetic ordering discussed above.

The material exhibits a ferromagnetic transition atTc = 15 K that the isotropic model
cannot describe. To give an account of this non-zero-temperature critical behaviour the
Hamiltonian must be generalized to include spin anisotropy and three-dimensional effects
[15], a modification which we are now investigating. However, it is amazing that the
agreement between the experimental data and the model persists down to rather low
temperatures (T ≈ 20 K), close to the measuredTc.

SVM thanks V A Fateev and Al B Zamolodchikov for helpful discussions.
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